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Warm up

◦ Reinforcement learning (RL): Sequential decision making in unknown environment

◦ Markov decision process (MDP): M = (S, A, P, r, µ, γ)

◦ Stationary stochastic policy π : S → ∆(A), at ∼ π(·|st)

◦ State-value function: V π
r (s) := E

[∑∞
t=0 γtr(st, at)|s0 = s, π

]
▶ we drop the dependence r when the context is clear

Challenges: ◦ Unknown dynamics: knowledge only through sampled experience.

◦ Large state and actions spaces.
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Learning from demonstrations

◦ The reward function r(a, s) is central to reinforcement learning pipeline

▶ generally, the reward function is unknown

▶ imitation of an expert may be easier than designing a reward function

(a) (b)
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Nuances: A comparison

IRL RL IL
Input Expert Demonstrations Reward Function Expert Demonstrations

Output Reward Function Optimal Policy Optimal policy

◦ The basic setting for inverse reinforcement learning (IRL) and imitation learning (IL):

▶ Given an expert’s demonstrations DπE = {(si, ai)}NE
i=1

▶ The true reward function rtrue is unknown to the learner

▶ Transition model is often unknown

◦ This talk focuses on the IL setting towards the expert policy

▶ Shameless plug: our work on IRL reward identifiability with applications to finance [Rolland et al., 2022]
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Solution via linear programming

◦ The linear programming (LP) approach

▶ It formulates the RL problem as an LP.

▶ Promising way to overcome the limitations of dynamic programming.

The first part of this talk is about
Provably efficient IL algorithms via proximal point method and the LP approach to MDPs.

Remark: ◦ We will discover our algorithm P2IL [Viano et al., 2022] (NeurIPS 2022).
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(Detour) Revisiting the Bellman optimality equation

◦ We denote V ⋆(s) = maxπ∈Π V π(s).

◦ V ⋆ satisfies the Bellman optimality equation, which can be written as a feasibility problem:

min
V

0

s.t. V (s) = (T V )(s) := max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V (s′)

]
, ∀ s ∈ S.

▶ T is the so-called Bellman operator

▶ The only feasible assignment is V ⋆

▶ The above equality constraints are nonlinear in V due to the maximization over A

Remarks: ◦ The Bellman optimality operator is a γ-contraction mapping w.r.t. ℓ∞-norm:∥∥T V ′ − T V
∥∥

∞
≤ γ
∥∥V ′ − V

∥∥
∞

.

◦ The Bellman operator is also monotonic (component-wise): V ′ ≤ V ⇒ T V ′ ≤ T V .
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(Detour) A relaxation of the Bellman optimality condition: Bellman inequalities
◦ The Bellman optimality ⇒ V ⋆ is the function with the lowest values V (s) among all V ∈ R|S| satisfying

V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′), ∀ s ∈ S, a ∈ A. (Bellman inequality)

◦ Note that the Bellman inequality constraint is linear in V =⇒ Linear Programming (LP)

Figure: Graphical interpretation of Bellman inequality
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(Detour) Solving MDPs with LP - Dual LP formulation

Dual LP
Let µ(s) > 0, s ∈ S be the initial distribution (or any positive weights). The dual LP formulation is given by

min
V

(1 − γ)
∑
s∈S

µ(s)V (s)

s.t. V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′), ∀ s ∈ S, a ∈ A.
(D)

Remarks: ◦ The optimal value function V ⋆ is the unique solution to the above LP.
◦ Number of decision variables: |S|, number of constraints: |S| × |A|.
◦ An optimal (deterministic) policy is the associated greedy policy

π⋆(s) ∈ arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s)

]
. (1)

◦ The factor (1 − γ) in (D) ensures that the dual variables are in the simplex ∆S×A.
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(Detour) Solving MDPs with primal LP

Primal LP formulation
Let µ(s) > 0, s ∈ S be the initial distribution (or any positive weights). The primal LP formulation is given by

max
λ≥0

∑
s∈S

∑
a∈A

r(s, a)λ(s, a)

s.t.
∑
a∈A

λ(s, a) = (1 − γ)µ(s) + γ
∑

s′∈S,a′∈A

P(s|s′, a′)λ(s′, a′), ∀ s ∈ S. (P)

Remarks: ◦ Number of decision variables: |S| × |A|.

◦ Number of constraints: |S| + |S| × |A|.

◦ The constraints implicitly implies the decision variables are in the probability simplex.

◦ The primal solution λ⋆ corresponds to the state-action occupancy measure of π⋆.
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From RL to IL

Dual LP
min

V ∈R|S|
(1 − γ)⟨µ, V ⟩

s.t. EV ≥ r + γP V .
(D)

Primal LP
max

λ∈R|S||A|
⟨λ, r⟩

s.t. E⊺λ = (1 − γ)µ + γP ⊺λ, λ ≥ 0.
(P)

The imitation learning goal
The goal is to learn an ϵ-optimal policy using as few resources as possible.

An ϵ-optimal policy with respect to the expert
A policy π is said ϵ-optimal policy with respect to the expert policy πE if it satisfies the following:

(1 − γ)
〈

µ, V
πE

rtrue − V π
rtrue

〉
≤ ϵ or ⟨λπE − λπ , rtrue⟩ ≤ ϵ.

Remarks: ◦ The learner tries to learn a ϵ-optimal policy using the following resources:
▶ Expert demonstrations: NE state action pairs sampled from the expert.
▶ Online interactions: N state action pairs sampled from the learner occupancy measure.
▶ Computation: The number of arithmetic operation needed to approximate the expert policy.
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IL via convex programming
◦ We can compute an estimator λ̂πE of λπE using the expert dataset DπE as follows:

λ̂πE (s, a) =
1

NE

∑
s′,a′∈DπE

1{s, a = s′, a′}

◦ Assuming rtrue ∈ R, we can obtain the following useful surrogate for optimality:

⟨λπE − λ, rtrue⟩ ≤ max
r∈R

⟨λπE − λ, r⟩ = max
r∈R

⟨λ̂πE − λ, r⟩ +
〈

λπE − λ̂πE , r

〉
≤ max

r∈R
⟨λ̂πE − λ, r⟩ +

d
√

NE

.

Primal IL formulation
While we cannot improve on the second term above, we can optimize the first term as follows:

min
λ∈R|S||A|

max
r∈R

⟨λ̂πE − λ, r⟩

s.t. E⊺λ = (1 − γ)µ + γP ⊺λ, λ ≥ 0.

(Primal IL)
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A parametric approach: Linear MDPs

Linear MDP [Jin et al., 2020]
We make the linear MDP assumption. That is, there exists mappings ϕ : S × A → Rm and g : S → Rm and a
vector w ∈ W := {w ∈ Rm : ∥w∥2 ≤ 1} such that

r(s, a) = ⟨ϕ(s, a), w⟩ ;

P (s′|s, a) =
〈

ϕ(s, a), g(s′)
〉

.

In the sequel, we will use the following compact matrix notation:

r = Φw;
P = ΦM.

Remarks: ◦ The Linear MDP is a standard assumption in RL literature.

◦ The feature mapping Φ is assumed known.

◦ The variables w and M are unknown.
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The constraint splitting trick

◦ We will now derive our algorithm, dubbed as P2IL, using Primal IL.

◦ We use variable splitting to obtain advantageous (i.e., exact) and computable model-free policy updates.

◦ To begin, we plug in the (Linear MDP) structure in (Primal IL) as follows1

min
λ∈R|S||A|

max
w∈W

⟨λπE − λ, Φw⟩

s.t. E⊺λ = (1 − γ)µ + γM⊺Φ⊺λ

⇓

min
ρ∈∆m,λ∈RS×A

max
w∈W

〈
ΦT λπE − ρ, w

〉
s.t. ET λ − γMT ρ = (1 − γ)µ

ΦT λ = ρ

◦ Supplementary slide 7 derives the inexact proximal point updates for λ and ρ on the Lagrangian.

1A similar trick appeared outside the imitation learning in [Mehta and Meyn, 2020], [Lee and He, 2019] and [Bas-Serrano et al., 2021]
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The algorithm: P2IL

Proximal Point Imitation Learning: P2IL

Initialize π0 as uniform distribution over A
for k = 1, . . . K do

// Policy evaluation
(wk, θk) ≈ arg max

w∈W,θ∈Θ
Gk(w, θ)

// Policy improvement
πk(a|s) ∝ πk−1(a|s) e

αQθk
(s,a)

end for

◦ Gk(w, θ) is the following concave and smooth function:2

Gk(w, θ) ≜ −
1
η

log
m∑

i=1

(ΦT λk−1)(i)eηδk
w,θ

(i) − (1 − γ)
〈

µ, V k
θ

〉
+
〈

λπE , ΦT w
〉

,

δk
w,θ ≜ w + γMV k

θ − θ and V k
θ ≜

1
α

log

(∑
a

πλk−1 (a|s)eαQθ(s,a)

)
where Qθ = Φθ.

2This term is called the logistic Bellman error [Bas-Serrano et al., 2021].
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Guarantees for P2IL
◦ We consider errors in the maximization of Gk(w, θ), i.e. ϵk = Gk(w⋆

k, θ⋆
k) − Gk(wk, θk).

◦ We check how errors propagate and then control their size.

Error propagation
Let π̂K be the average iterate. Then, with probability at least 1 − δ, it holds that

max
r∈R

⟨λπE − λ
π̂K

, r⟩ ≤
1
K

(
log (m |A|) + C

∑
k

√
ϵk +

∑
k

ϵk

)
.

Error control
Let (wk, θk) be the output of the stochastic gradient ascent (SGA) subroutine for T iterations. Then,
ϵk = maxw,θ G

k
(w, θ) − Gk(wk, θk) ≤ O( max{η,1}m

β
√

T
), with probability 1 − δ.

Remarks: ◦ Choosing K = Ω(ϵ−1) and T = Ω(ϵ−4) we obtain O(ϵ−5) online interactions.

◦ We use samples to approximate the gradients ∇θGk and ∇wGk.

◦ We analyze the effect of the biased gradients in the SGA routine.

◦ Please note the presence of the inconspicuous constant β in the denominator
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Online IL experiments: Discrete actions
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(d) CartPole

0 25 50 75 100
Samples (x 100)

0

1
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(f) TwoStateStochastic
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(g) Gridworld

0 4 8 12
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1

(h) Acrobot

Proximal Point IQLearn AIRL GAIL AIRL Linear GAIL Linear

Figure: Online IL Experiments. We show the total returns vs the number of env steps.
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Continuous control experiments

0 500 1000 1500 2000
Samples (x 100)

0

1
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(b) Ant
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Samples (x 100)

0

1

(c) Hopper

0 1000 2000 3000 4000
Samples (x 100)

0

1
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Proximal Point
IQLearn
AIRL
GAIL

Figure: Neural function approximation experiments.

◦ This setting with non linear function approximation and continuous actions is not covered by theory.
◦ However the empirical performance is convincing vs IQLearn [Garg et al., 2021].
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Offline experiments

◦ The algorithm works offline just changing the center point in the Bregman divergence

G(w, θ) ≜ −
1
η

log
m∑

i=1

(ΦT λπE )(i)e−ηδk
w,θ

(i) + (1 − γ)
〈

µ, V k
θ

〉
−
〈

λπE , ΦT w
〉

0 3 6 9 12 15
Expert Trajectories

0.9

1.0

(a) Acrobot-v1

0 3 6 9 12 15
Expert Trajectories

0.5

1.0

(b) CartPole-v1

0 3 6 9 12 15
Expert Trajectories

0.2

1.0

(c) LunarLander-v2

0 100 200 300 400
Expert Samples (x 100)

0

1

(d) Pong

Proximal Point
IQLearn
AIRL
GAIL

Figure: Offline IL Experiments
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Recovered rewards

◦ In the policy evaluation step, we learn also a reward function.

◦ The recovered cost rK is not similar to rtrue (not surprising given reward shaping [Ng and Russell, 2000]).

◦ However, the value functions V ⋆
ctrue and V ⋆

rK are =⇒ We recover the optimal policy acting greedy wrt rK .3
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3We observed this empirically. Formal guarantees are an open question.
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An exploration assumptions towards the sample complexity guarantees

◦ EULA: In infinite horizon Linear MDP, it is common to make the following assumption.

Positive definite covariance matrix
For any policy πk generated during the iterations of the P2IL algorithm, it holds that

σmin
(
Es,a∼λ

πk
ϕ(s, a)ϕ(s, a)T

)
≥ β > 0.

Remarks: ◦ Roughly speaking, the assumption is rather strong.

◦ For example, if we use one hot features, the condition is equivalent to

λπk (s, a) ≥ β > 0 ∀s, a ∈ S × A, ∀k ∈ [K].

◦ It means that all the policies πk should visit all state action pairs with positive probability.

◦ In real scenarios, there are often states of the environment that should be avoided.
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A new algorithm without exploration assumption [Viano et al., 2024]

◦ Let us recall our goal

The imitation learning goal
The goal is to learn an ϵ-optimal policy using as few resources as possible.

An ϵ-optimal policy with respect to the expert
A policy π is said ϵ-optimal policy with respect to the expert policy πE if it satisfies the following:

(1 − γ)
〈

µ, V
πE

rtrue − V π
rtrue

〉
≤ ϵ or ⟨λπE − λπ , rtrue⟩ ≤ ϵ.

Remarks: ◦ In the sequel, we will interpret
∑K

k=1 ⟨λπE − λπk , rtrue⟩ as regret

◦ We will use an online learning framework to optimize this regret

◦ We will need to overcome that a direct sublinear regret characterization wrt πk is not possible:

▶ rtrue is never observed by the learner
▶ The learner has no feedback on the decisions made.
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Online learning: Basics
◦ In online linear minimization, a learner faces a non-stationary environment for K rounds.

Online linear minimization with full information
for k = 1, . . . , K do

The learner plays a decision xk from a convex set X .
The environment choose a loss vector ℓk.
The learner suffer a cost

〈
ℓk, xk

〉
.

The learner observes the vector ℓk.
end for

Remarks: ◦ The object of interest in online learning is the regret against a comparator x⋆ ∈ X .

Regret(K; x⋆) =
K∑

k=1

〈
ℓk, xk − x⋆

〉
▶ ℓk is called the loss vector.
▶ xk are the learner decisions.
▶ x⋆ is called the comparator.

◦ Typically, the comparator is chosen to maximize the regret (i.e., worst case).
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A game theoretic approach

◦ We will need the following, trivial decomposition of the ϵ-approximate solution concept for IL:

K∑
k=1

⟨λπE − λπk , rtrue⟩ =
K∑

k=1

〈
λπE − λπk , rtrue − rk

〉
+

K∑
k=1

〈
λπE − λπk , rk

〉
≤ ϵ.

◦ Hence, we set up a game between two players.

▶ The policy player updates the policy πk.
▶ The reward player updates the rewards {rk}K

k=1.

◦ We will generate sequences {πk}K
k=1 and {rk}K

k=1 such that both sums grow sublinearly.

Remarks: ◦ In P2IL, we directly optimize for the worst case r

◦ In this new approach, we will optimize the key variables based on what we observe online
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An online learning view on the game
◦ Regret for the reward player:

K∑
k=1

〈
λπk − λπE , rk − rtrue

〉
▶ {rk}K

k=1 is the sequence of decision produced by the no-regret algorithm used to update the reward.
▶ {λπE − λπk }K

k=1 is the sequence of (negated) loss vectors.
▶ rtrue is the comparator.

◦ Regret for the policy player:
K∑

k=1

〈
−rk, λπk − λπE

〉
▶ {λπk }K

k=1 is the sequence of occupancy measures of the policies {πk}K
k=1.

▶ The sequence {πk}K
k=1 is interpreted as the sequence of decisions of the algorithm.

▶ {rk}K
k=1 is the sequence of (negated) loss vectors.

▶ λπE acts as comparator, i.e., the occupancy measure of the expert policy.
◦ Supplementary slide 13 derives our algorithm
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The new algorithm: ILARL
◦ We call the resulting algorithm ILARL: Imitation Learning via Adversarial Reinforcement Learning.

Imitation Learning via Adversarial Reinforcement Learning: ILARL

1: Initialize π0 as uniform distribution over A
2: for k = 1, . . . K do
3: // Reward players update

rk+1 = ΠR

[
rk + γ(λ̂πE − λ̂πk )

]
4: // Policy players update
5: Find an estimator-uncertainty pair (zk, bk) such that

γ
∣∣ϕ(s, a)T zk − P V k−1(s, a)

∣∣ ≤ bk(s, a) ∀s, a ∈ S × A with high probability.

6: Update Q and V values

Qk(s, a) = rk(s, a) + γϕ(s, a)T zk + bk(s, a), V k(s) =
〈

πk(a|s), Qk(s, a)
〉

7: Update policy
πk+1(a|s) ∝ πk(a|s)eηQk(s,a)

8: end for
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Results with linear function approximation
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MDP trajectories

0

1

(a) NE = 1
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ILARL (Ours) PPIL IQLearn GAIL AIRL REIRL BC

Figure: Experiments on a continuous gridworld with a stochastic expert.The y-axis reports the normalized return. 1 correpsonds
to the expert performance and 0 to the uniform policy one.

◦ This experiment shows that ILARL otperforms previous methods.

◦ Supplementary slide 18 explains possible extensions for deep learning.
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A literature comparison

◦ P2IL is the first algorithm to jointly achieve convincing empirical performance, infinite horizon sample
complexity guarantees and it avoids unstable alternated updates for cost and value function.

◦ ILARL is the first algorithm to achieve an online interaction bound without exploration assumption in
infinite horizon linear MDP.

Algorithm Sample Complexity Bound Strong Empirical Performance Training stability

Max Margin IRL ✗ ✗ ✓
Max Entropy IRL ✗ ✗ ✓

Max Likelihood IRL ✗ ✓ ✓
GAIL ✗ ✓ ✗
ASAF ✗ ✓ ✓
SQUIL ✗ ✓ ✓

ValueDICE ✗ ✓ ✗
Optimistic GAIL ✓ ✗ ✗

OAL ✓ ✓ ✗
IQLearn ✗ ✓ ✓

P2IL ✓ ✓ ✓
ILARL ✓4 Stay tuned ... Stay tuned ...

4without exploration assumptions
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An additional comparison between theoretical imitation learning works.

Table: Comparison with related algorithms Our algorithms provide guarantees for the number of expert trajectories
independent on S and Π without assumptions on the expert policy. For what concerns, the MDP trajectories we provide the
best known results in finite and infinite horizon linear MDPs. By Linear Expert, me mean that the expert policy is
π(s) = maxa∈A ϕ(s, a)T θ for some unknown vector θ.

Algorithm Setting Expert Traj. MDP Traj.

Behavioural Cloning
Function Approximation, Offline [Agarwal et al., 2019] O

(
H4 log|Π|

ϵ2

)
-

Tabular, Offline [Rajaraman et al., 2020] Õ
(

H2|S|
ϵ

)
-

Linear Expert, Offline [Rajaraman et al., 2021] Õ
(

H2d
ϵ

)
-

Mimic-MD [Rajaraman et al., 2020] Tabular, Known Transitions, Deterministic Expert O
(

H3/2|S|
ϵ

)
-

OAL [Shani et al., 2021] Tabular O
(

H2|S|
ϵ2

)
O
(

H4|S|2|A|
ϵ2

)
MB-TAIL [Xu et al., 2023] Tabular, Deterministic Expert O

(
H3/2|S|

ϵ

)
O
(

H3|S|2|A|
ϵ2

)
OGAIL [Liu et al., 2022b] Linear Mixture MDP O

(
H3d2

ϵ2

)
O
(

H4d3

ϵ2

)
PPIL [Viano et al., 2022] Linear MDP, Persistent Excitation O

(
d

(1−γ)2ϵ2

)
O
(

d2

β6(1−γ)9ϵ5

)
ILARL [Viano et al., 2024] Linear MDP O

(
d

(1−γ)2ϵ2

)
O
(

d3

(1−γ)8ϵ4

)
ILARL (Finite Horizon) [Viano et al., 2024] Episodic Linear MDP O

(
dH2

ϵ2

)
O
(

d3H4

ϵ2

)
Remark : It can be shown that β ≥ d−1. So ILARL improves also the dimension dependence of P2IL.
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Side note: Towards an integrated analysis with neural function approximations

◦ Our analysis for P2IL is limited to linear function approximation

◦ The promising results with DNNs call for a theoretical analysis beyond the linear setting

◦ Our recent work [Liu et al., 2022a] investigates Least Squares Value Iteration with DNNs

▶ under ϵ-greedy exploration
▶ achieves sublinear regret

◦ We consider general function spaces beyond the RKHS associated with the NTK regime

◦ As a result, we develop guidelines for architectures for practical deep RL
▶ width or depth scaling
▶ depending on the smoothness of the Q-function
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Conclusions

More in the paper
◦ A detailed discussion on duality results for the linear programming formulation of imitation learning.
◦ Theoretical guarantees for the offline setting.
◦ Use the cost to generalize to new dynamics at test time.

Open questions
◦ Can we improve the sample complexity wrt to ϵ?
◦ Can we prove guarantees for the policy that acts greedly wrt the recovered cost?
◦ Can we analyze policy improvement errors as in [Geist et al., 2019]?
◦ Can we analyze also P2IL with neural function approximation?
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Strong Duality proof

(1 − γ)Es∼µ[V π(s)] = (1 − γ)E
[∑∞

t=0
γtr(st, at) | s0 ∼ µ

]
⇒ dual objective (D)

= (1 − γ)
∑

s∈S,a∈A

∞∑
t=0

γtP(st = s, at = a | s0 ∼ µ, π)r(s, a)

=
∑
s∈S

∑
a∈A

λπ(s, a)r(s, a) ⇒ primal objective (P)
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Proximal point method (PPM) in the Bregman setup

Definition: Bregman divergence
Let ω : X → R be a distance generating function where ω is 1−strongly convex w.r.t. some norm ∥ · ∥ on X and
is continuously differentiable. The Bregman divergence induced by ω(·) is given by

Dω(z, z′) = ω(z) − ω(z′) − ∇ω(z′)⊤(z − z′).

◦ The proximal point method in the Bregman setup reads as follows:

xk+1 = arg min
x∈Rp

{
f(x) +

1
η

Dω(x, xk)
}

Remarks: ◦ For example ω(x) = ⟨x, log x⟩, gives the KL divergence.

◦ Avoids projection onto a simplex.

◦ Improves the dependence on the domain dimension.

◦ Forms the backbone of extra-gradient, mirror descent and others via inexact approximations.
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Deriving P2IL

◦ We derive the Lagrangian as follows

min
ρ∈∆m,λ∈RS×A

max
w∈W,V∈R|S|,θ∈Rm

−
〈

ρ − ΦT λ̂πE , w

〉
−
〈

V, −ET λ + γMT ρ + (1 − γ)µ
〉

−
〈

θ, ΦT λ − ρ
〉

︸                                                                                                                                            ︷︷                                                                                                                                            ︸
≜f(ρ,λ)

◦ P2IL applies PPM to the above problem, i.e.

ρk, λk = arg min
ρ∈∆m,λ∈RS×A

f(ρ, λ) +
1
η

D(ρ, ΦT λk−1) +
1
α

H(λ, λk−1)

◦ D(·, ·) and H(·, ·) are respectively the relative entropy and the conditional relative entropy
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Deriving P2IL (Continued)

◦ We can exchange max and min by Sion’s theorem [Sion, 1958]

max
w∈W,V∈R|S|,θ∈Rm

min
ρ∈∆m,λ∈RS×A

−
〈

ρ − ΦT λ̂πE , w

〉
−
〈

V, −ET λ + γMT ρ + (1 − γ)µ
〉

−
〈

θ, ΦT λ − ρ
〉

+
1
η

D(ρ, ΦT λk−1) +
1
α

H(λ, λk−1)

◦ The minimizers of the inner minimization, i.e.

ρw,θ
k

, λθ
k = arg min

ρ∈∆m,λ∈RS×A
L(w, V, θ, ρ, λ)

are known analytically.

Advancing Infinite Horizon Imitation Learning: Efficiency Guarantees and Assumption-free Exploration | Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 18



Deriving P2IL (Continued)

◦ Indeed the maximizers are

ρw,θ
k

(i) ∝ (ΦT λk−1)(i) e
ηδk

w,θ
(i)

,

πθ
k(a|s) = πλk−1 (a|s) eα(Qθ(s,a)−V k

θ
(s)),

λθ
k = λπθ

k
(a|s).

where we used the notation δk
w,θ ∈ Rm by δk

w,θ := w + γMV k
θ − θ, and we impose the following form for

the value function to guarantee that πθ
k lies in the simplex

V k
θ (s) =

1
α

log

(∑
a

πλk−1 (a|s)eαQθ(s,a)

)
where Qθ = Φθ
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Deriving P2IL (Continued)
◦ It remains to find the maximizers of the outer maximization,

w⋆
k, θ⋆

k = arg max
w∈W,θ∈Rm

〈
ρw,θ

k
− ΦT λ̂πE , w

〉
+
〈

Vk
θ , −ET λθ

k + γMT ρw,θ
k

+ (1 − γ)µ
〉

+
〈

θ, ΦT λθ
k − ρw,θ

k

〉
+

1
η

D(ρw,θ
k

, ΦT λk−1) +
1
α

H(λθ
k, λk−1)

= arg max
w∈W,θ∈Rm

Gk(w, θ)

◦ Gk(w, θ) is the following concave and smooth function.

Gk(w, θ) ≜ −
1
η

log
m∑

i=1

(ΦT λk−1)(i)e−ηδk
w,θ

(i) + (1 − γ)
〈

µ, V k
θ

〉
−
〈

λ̂πE , ΦT w

〉
.

◦ Then, the PPM update for the variables (ρk, λk) is given by

λk(i) ∝ (ΦT λk−1)(i) e
−ηδk

w⋆
k

,θ⋆
k

(i)
,

πk(a|s) ∝ πλk−1 (a|s) e
−αQθ⋆

k
(s,a)

,

λk = λπk(a|s)
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Deriving P2IL (Continued)
◦ It remains to find the maximizers of the outer maximization,

w⋆
k, θ⋆

k = arg max
w∈W,θ∈Rm

〈
ρw,θ

k
− ΦT λ̂πE , w

〉
+
〈

Vk
θ , −ET λθ

k + γMT ρw,θ
k

+ (1 − γ)µ
〉

+
〈

θ, ΦT λθ
k − ρw,θ

k

〉
+

1
η

D(ρw,θ
k

, ΦT λk−1) +
1
α

H(λθ
k, λk−1)

= arg max
w∈W,θ∈Rm

Gk(w, θ)

◦ Gk(w, θ) is the following concave and smooth function.

Gk(w, θ) ≜ −
1
η

log
m∑

i=1

(ΦT λk−1)(i)e−ηδk
w,θ

(i) + (1 − γ)
〈

µ, V k
θ

〉
−
〈

λ̂πE , ΦT w

〉
.

◦ Then, the PPM update for the variables (ρk, λk) is given by

λk(i) ∝ (ΦT λk−1)(i) e
−ηδk

w⋆
k

,θ⋆
k

(i)
,

πk(a|s) ∝ πλk−1 (a|s) e
−αQθ⋆

k
(s,a)

,

λk = λπk(a|s)

We are finally done (cf., Slide 14)!
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Controlling the regret terms: the reward player

◦ If the class R is a convex set, then we can simply use Online Gradient Ascent for the reward player. That is,

rk+1 = ΠR

[
rk + γ(λπE − λπk

)
]

◦ The caveat is that λπE − λπk can not be computed because the dynamics are unknown.

◦ However, it is easy to obtain an unbiased estimate with bounded variance.
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Controlling the regret terms: the policy player
◦ We develop a way to bound this term without exploration assumptions.

◦ ∀ {Qk : S × A → R}K
k=1 and {V k : S → R s.t. V k(s) =

{〈
πk(·|s), Qk(s, ·)

〉}K

k=1
}, we have

K∑
k=1

〈
λπE − λπk , rk

〉
=

K∑
k=1

Es∼λπE

[〈
Qk(s, ·), πE(s) − πk(s)

〉]
(OMD)

+
K∑

k=1

E
s,a∼λπk

[
Qk+1(s, a) − rk(s, a) − γP V k(s, a)

]
(Optimism 1)

+
K∑

k=1

Es,a∼λπE

[
rk(s, a) + γP V k(s, a) − Qk+1(s, a)

]
(Optimism 2)

−
K∑

k=1

E
s,a∼λπk

[
Qk+1(s, a) − Qk(s, a)

]
(Shift 1)

−
K∑

k=1

Es,a∼λπE

[
Qk(s, a) − Qk+1(s, a)

]
(Shift 2)
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Controlling each term

◦ (OMD) is sublinear in K if we update the policies via a no-regret algorithm.

◦ For example, we can use online mirror ascent with entropy as regularizer, i.e.

πk+1(a|s) ∝ πk(a|s)eηQk(s,a)

◦ (Shift 2) simply telescopes.

◦ (Shift 1) is small because the sequence of policies {πk}K
k=1 is slowly changing, i.e.

max
s∈S

∥πk+1(·|s) − πk(·|s)∥1 ≤ O(η)

◦ With this observation, we have that

K∑
k=1

〈
λπE − λπk , rk

〉
= o(K) +

K∑
k=1

E
s,a∼λπk

[
Qk+1(s, a) − rk(s, a) − γP V k(s, a)

]
(Optimism 1)

+
K∑

k=1

Es,a∼λπE

[
rk(s, a) + γP V k(s, a) − Qk+1(s, a)

]
(Optimism 2)
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Controlling each term (Continued)

◦ We are left with controlling (Optimism 1) and (Optimism 2).

◦ If the transition were known, we could make the terms zero by the following update rule

Qk+1(s, a) = rk(s, a) + γP V k(s, a)

= rk(s, a) + γP πk
Qk(s, a).

◦ That is applying the Bellman evaluation operator of the policy πk on Qk.

◦ Unfortunately, this can not be done because we do not know the transition dynamics, i.e. the matrix P .

◦ We circumvent the problem finding an estimator-uncertainty pair (θk, bk) such that

γ
∣∣ϕ(s, a)T θk − P V k(s, a)

∣∣ ≤ bk(s, a) ∀s, a ∈ S × A

with high probability.
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Controlling each term (Continued)

◦ We use the estimator-uncertainty uncertainty pair to approximate the update

rk(s, a) + γP V k(s, a)

as
Qk+1(s, a) = rk(s, a) + γϕ(s, a)T θk + bk(s, a).

It follows that with high probability,
▶ (Optimism 2) ≤ 0
▶ (Optimism 1) ≤ 2

∑K

k=1 Es,a∼λπk

[
bk(s, a)

]
◦ In the paper, we show how to design uncertainties {bk}K

k=1 such that

2
K∑

k=1

E
s,a∼λπk

[
bk(s, a)

]
= o(K)

without requiring exploration assumptions at all!

◦ Our algorithm can be found in Slide 25
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Take Aways for Deep Imitation Learning.

◦ The improved result follows using policies in the form

πk+1(a|s) ∝ πk(a|s)eηQk(s,a)

where Qk(s, a) is an upper bound on rk(s, a) + γP V k(s, a).
▶ Going beyond linear functions, we can instantiate a neural network f : S × A → R trying to predict

yk(s, a) = rk(s, a) + γP V k(s, a).
▶ Moreover, we can try heuristics to estimate the confidence interval width ∆(s, a) of the neural network

prediction f(s, a).
▶ Therefore, we can use updates

πk+1(a|s) ∝ πk(a|s)eη(f(s,a)+∆(s,a)).

▶ If the environmnet has continuous actions, these updates can be approximated via Soft Actor Critic
[Haarnoja et al., 2018].

Advancing Infinite Horizon Imitation Learning: Efficiency Guarantees and Assumption-free Exploration | Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 18


	Appendix

